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Abstract

Large language models can memorize and repeat their training data, causing privacy
and copyright risks. To mitigate memorization, we introduce a subtle modification
to the next-token training objective that we call the goldfish loss. During training,
a randomly sampled subset of tokens are excluded from the loss computation.
These dropped tokens are not memorized by the model, which prevents verbatim
reproduction of a complete chain of tokens from the training set. We run extensive
experiments training billion-scale Llama-2 models, both pre-trained and trained
from scratch, and demonstrate significant reductions in extractable memorization
with little to no impact on downstream benchmarks.

1 Introduction

Language model memorization is a phenomenon in which models internally store and later regenerate
verbatim copies of training data. Memorization creates a number of risks when LLMs are used for
commercial purposes. First, there are copyright risks for customers, as LLM outputs may contain
intellectual property [Shoaib, 2023]. This is particularly problematic for code models, as the verbatim
reuse of code can impact downstream licenses. This is true even when the regenerated code has
an open-source license, and many such licenses contain terms that restrict commercial use. Next,
there are copyright risks for providers, as the legality of hosting and distributing models that can
regenerate copyrighted content is not yet resolved. Finally, there are privacy risks, as regenerated
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Figure 1: A pretrained 7B model (the control) is further trained for 100 epochs on (left) the first chapter of Harry
Potter or (right) 100 wikipedia documents. We observe a drop in exact match memorization and RougeL metrics
when training with goldfish loss (see Section 4 for metric descriptions). When prompted with the opening of
Harry Potter (gray) the standard model regenerates the original text (red) while the goldfish model does not.

Correspondence to ahans1@umd.edu. Codebase: https://github.com/ahans30/goldfish-loss.
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training data may contain PII or other sensitive data. A number of works [Eldan and Russinovich,
2023, Zhang et al., 2024b, Jang et al., 2023] have tried to mitigate memorization through model
editing or “unlearning” after the model is trained. Instances of commerical LLMs employing such
stopgaps to prevent lawsuits from data owners have been noted [Hays, 2023]. We argue that it is best
to stop memorization at the source and leave such approaches for last-mile touchups.

We present the goldfish loss, a strikingly simple technique that leverages properties of the next-token
prediction objective to mitigate verbatim generation of memorized training data. Like standard
training, the proposed approach begins with a forward pass on all tokens in a batch. Unlike standard
training, in which the next token prediction loss is calculated on all inputs, we exclude a pseudo-
random subset (e.g., 25%) of the training tokens. On the backward pass, the model never learns to
reproduce the excluded tokens. At inference time, the model must make a “guess” each time it runs
into a dropped token, causing it to depart from the training data sequence. In this way, the goldfish
loss enables training on text without the ability to make a verbatim reproduction at inference time.

Our exploration of this idea begins by stress-testing the goldfish loss with a training setup that
aggressively promotes memorization. We train a 7B parameter model on a small number of articles
for 100 epochs, finding that the models trained with goldfish loss resist memorization while standard
training memorizes most of the training data (See Figure 1). We then turn to more standard training
regimens, where we observe that the memorization metrics of goldfish models closely resemble
models that never saw the training data at all. We then look at the utility of goldfish models and
observe that they still learn effectively from training data, although in some situations they may need
to train for longer than standard models to compensate for the lost tokens that were excluded from the
loss. Finally, we try to adversarially extract training data from goldfish models using an aggressive
beam search decoder, but this typically fails. We do, however, observe that membership inference
attacks still work on goldfish models, albeit with marginally lower accuracy.

2 Related Work

2.1 Quantifying Memorization in LLMs

Both benign and adversarial prompting strategies can both extract training data from open-sourced
large language models [Carlini et al., 2019, 2021, Inan et al., 2021]. Carlini et al. [2023] proposes a
family of concrete memorization metrics including “extractable memorization” with prefix length k,
where if the model memorizes a string, it will regurgitate the rest of the string when prompted with
a prefix of length k. This notion of memorization is the focus of the work below, as it represents
a worst-case scenario and is easy to reproduce in controlled experiments. It should be noted that
training data can be extracted without using a k-prefix. Spontaneous reproducing of training data has
been observed in both language models [Nasr et al., 2023] and image generators [Somepalli et al.,
2023] without any prior knowledge of the data content. More recently, Schwarzschild et al. [2024]
proposes a novel definition for memorization that quantifies whether a training string is extractable
by an adversarial prompt that is shorter than the string itself.

2.2 Mitigating Memorization in LLMs

Differentially private (DP) training [Abadi et al., 2016] provides a guarantee that the presence or
absence of any single data point will have a minimal impact on the model’s output. However,
differential privacy can compromise model utility and is resource-intensive, especially for large
language models [Anil et al., 2021]. The practicality of these methods can be improved by pretraining
on sanitized non-sensitive data before DP training [Zhao et al., 2022, Shi et al., 2022].

It is known that deduplicating training data can mitigate memorization [Kandpal et al., 2022].
However, this is complicated by the scale of web data and the prevalence of near-duplicated versions
of many texts. Distinct from work on training time techniques, Ippolito et al. [2022] proposes
detection of memorization at test time using a Bloom filter [Bloom, 1970]. It should be noted that
this approach is also vulnerable to missing near-duplicated documents due to the brittle data structure
and feature extractors used.
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2.3 Regularization and Memorization

Classical definitions of memorization relate to overfitting [Feldman and Zhang, 2020] and argue that
memorization is reduced through regularization techniques that reduce overfitting, through strategies
such as weight decay and dropout [Srivastava et al., 2014]. However, both are insufficient to prevent
memorization in LLMs [Tirumala et al., 2022, Lee et al., 2022a]. Related regularization strategies are
the addition of noise to input embeddings [Jain et al., 2024, Wen et al., 2024], or random dropout of
tokens during training [Hou et al., 2022]. Lin et al. [2024] propose to drop tokens in a data-dependent
manner, to train the model only on a subset of tokens, continuously selected by a reference model.

Our approach is conceptually quite different because we forgo randomized regularization, and
construct a localized, pseudo-random token mask — every time a certain phrase or passage appears
in the data, the passage is masked in the same manner, preventing the model from learning the entire
passage verbatim. In comparison, if the model is trained with randomized dropout of tokens or
weights, it will eventually learn the entire passage, as the passage is seen multiple times with different
information masked.

3 Goldfish Loss: Learning Without Memorizing

LLMs are commonly trained using a causal language modeling (CLM) objective that represents the
average log-probability of a token, conditioned on all previous tokens. For a sequence x = {xi} of L
training tokens, this is written as:

L(θ) = − 1

L

L∑
i=1

logP (xi|x<i; θ). (1)

This objective is minimized when the model correctly predicts the sequence {xi} with high confidence.
For this reason, models trained by next token prediction can be prone to memorization. However,
successful regeneration of a token xj at test time depends on the correct conditioning of the complete
preceding sequence x<j being provided as input.

The goldfish loss is only computed on a subset of the tokens, and thus prevents the model from learning
the entire token sequence. Choose a goldfish mask G ∈ {0, 1}L and define the goldfish loss as

Lgoldfish(θ) = − 1

|G|

L∑
i=1

Gi(xi) logP (xi|x<i; θ). (2)

In plain English, we ignore the loss on the ith token if its mask value is Gi = 0, and include the token
if Gi = 1. Most importantly, the outputs xi are still conditioned on all prior tokens x<i, allowing
the model to learn the full distribution of natural language over the course of training. Yet, for a
given passage, the model does not learn to predict the ith token, and so is never conditioned on the
exact sequence x<i at test time. Note that the goldfish mask will be chosen independently for each
training sample, based on local context.
Remark. We can simulate the impact of this intervention in a toy computation. Assume we are
given a model trained in a standard manner, where P (xi|x<i) = p, ∀i > m for some memorized x
from the training data and an integer m. Sampling n tokens with prefix x<m regenerates the string
x<m+n perfectly with probability pn. For p = 0.999, n = 256, this happens 77.40% of the time.

Now assume that we are given a model trained with goldfish loss, where P (xi|x<i) = p on trained
tokens due to memorization, and P (xi|x<i) = q on masked tokens due to generalization. Now,
we regenerate n perfect tokens with probability p2n/3qn/3. With k = 3, p = 0.999, q = 0.95, the
sequence is sampled with probability of only 1.06%. The compounding effect of the dependence
on sequence length n is critical, for example for sequences of length n = 16 the difference is only
between 98.41% for standard loss to 75.26% for goldfish loss.

There are a range of ways to choose the goldfish mask, after choosing a drop frequency k. A simple
baseline that we investigate is to drop every kth token in a sequence, which we refer to as a static
mask, which we juxtapose with a random mask baseline that drops every token with probability
1/k. We use the random mask to differentiate the effects of regularization that random dropping
provides from the effects of the goldfish loss, which is deterministic.
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Figure 2: Memorization as
Function of k in Goldfish Loss:
We train 1B parameter models
described in Section 4.1 and plot
histograms of RougeL scores to
measure extractable memoriza-
tion. Control refers to a model
not trained on the 2000 repeated
wikipedia documents. We ob-
serve that for lower values of k,
the extractable memorization is
close to the control, and that ex-
act repetitions observed in stan-
dard loss are effectively miti-
gated.

3.1 Robust Handling of Duplicate Passages with Hashing

Web documents often appear in many non-identical forms. For example, a syndicated news article
may appear in many different locations across web, each with a slightly different attribution, different
article headers, different advertisements, and different footers. When certain passages appear multiple
times in different documents, we should mask the same tokens each time, as inconsistent masking
would eventually leak the entire passage. The simple static mask baseline fails here, as the mask is
aligned to the pretraining sequence length and not to the content of the text.

To solve this problem, we propose to use a localized hashed mask. For a positive integer h
determining the context width of the hash, we mask token xi if and only if the outputs of a hash
function f : |V |h → R applied to the h preceding tokens is less than 1

k . With this strategy, the
goldfish loss mask for every position depends only on the h preceding tokens. Every time the same
sequence of h tokens appears, the (h+ 1)th token is masked in the same way.

With this strategy, h cannot be too small, or the model may fail to memorize some important (h+ 1)-
grams that should be memorized. For example, if h = 7 is used, the model may never learn to
produce the word “Power” at the end of the phrase “the Los Angeles Department of Water and Power.”
Formally, with the hashed mask, of all (h+ 1)-grams, a fixed subset of size 1

k is never learned. As h
increases, this issue becomes less prominent, as the frequency of n-grams decreases exponentially due
to Zipf’s law [Zipf, 1935]. However, we also cannot choose h too large, as then the hash is underdeter-
mined for the first h−1 tokens in the document. In practice, we may never want the model to memorize
long (h + 1)-grams of a certain length. For example, n-grams of length 13 are rare enough that
overlaps of 13-grams between train data and test data are used in Brown et al. [2020], Du et al. [2022]
as indicative of contamination. Analogously, setting h = 13, we consider the memorization of these
n-grams as undesirable, as if this subset had been deduplicated before training [Lee et al., 2022b].

Furthermore, it is wise to normalize text before hashing to prevent minor variations in representation
(e.g., soft dashes, non-breaking spaces) from impacting the hash. Normalized hash functions of this
kind have already been implemented for use in watermarking [Kirchenbauer et al., 2023].

4 Can Goldfish Loss Prevent Memorization?

In this section, we validate that the goldfish loss can indeed prevent memorization. We consider two
setups, an extreme setup that aggressively promotes memorization with many epochs on few samples,
and a standard setup that emulates the kinds of batching used in realistic model training.

We quantify memorization using two metrics. We first chop each test sequence from the training set
into a prefix and a suffix of length n tokens. Conditioned on the prefix, we autogressively generate
text with zero temperature. We compare the generated suffix with the ground truth suffix using two
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Figure 3: Benchmark Performance: We pretrain 1B parameter models on 20 billion tokens as described in
Section 4.1 and evaluate downstream performance on various benchmarks. We note only marginal change in
performance for models trained with goldfish loss (with various values of k) in comparison to the model trained
with standard loss. Control refers to model trained only on RedPajama and not on wikipedia documents.

metrics. These are (1) RougeL score [Lin, 2004] which quantifies the length of the longest common
(non-consecutive) subsequence. A score of 1.0 indicates perfect memorization. (2) Exact Match
rate, which measures the percentage of correctly predicted tokens compared to ground truth text.

4.1 Preventing Memorization in Extreme Scenarios

We begin by considering a training setup that is specifically designed to induce memorization. We
train a LLaMA-2-7B model for 100 epochs on a dataset consisting of only 100 English Wikipedia
[Wikimedia Foundation] articles. We select these documents by randomly sampling a set of pages
that contain between 2000 and 2048 tokens. In Figure 1, we observe that standard training results
in verbatim memorization of 84/100 articles, while the goldfish loss model with k = 4 memorized
none. RougeL metrics indicate that the model trained with goldfish loss repeats non-consecutive
n-gram sub-sequences that are roughly twice as long as a model that never saw the data. This is
consistent with our definition. The model still memorizes subsequences, but the likelihood of getting
a long subsequence correct reduces exponentially in the length of the subsequence.

4.2 Preventing Memorization in Standard Training

Our experimental set-up largely follows that of TinyLLaMA-1.1B [Zhang et al., 2024a]. We pretrain
a language model of size 1.1B with a vocabulary size of 32k. We compare the goldfish loss in
Equation 2 at different values of k and the standard causal language modeling loss in Equation 1.
More training details can be found in Appendix A.

We construct the dataset for this experiment based on two sources. First, a subset of RedPajama
version 2 [Together Computer, 2023], on which we train for a single epoch. Second, we also
mix in 2000 target sequences, each of 1024 to 2048 token length, from the Wikipedia [Wikimedia
Foundation] corpus. To simulate the problematic case of data that is duplicated within the dataset, we
repeat this target set 50 times in the course of training, in random locations. In total, we train on 20
billion tokens in over 9500 gradient steps.

Under these normal training conditions, the goldfish loss significantly hinders the model’s ability
to reproduce the target sequences that we mix into the larger training corpus. Figure 2 plots the
distribution of RougeL memorization scores for target documents after training. For k = 3 and k = 4,
the distribution of RougeL values mostly overlaps with that of the oblivious control model that did
not train on the target documents.

4.3 Divergence Positions vs. Drop Positions

Our intuition is that tokens are not memorized when they are dropped by the goldfish loss, leading
to model divergence from the ground truth. To validate this intuition, we analyze the relationship
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between the positions of dropped tokens and the positions at which the model diverges from the
ground truth while attempting to regenerate the sequence. We consider the 2000 documents trained
for 50 epochs in Section 4.2. Figure 4 and Table 1 show the relation between dropped index and
diverged index.

We see that most sequences do not survive beyond the first dropped token without diverging, despite
having trained on them 50 times in a row. We also see that divergence locations overwhelmingly coin-
cide with the positions that were masked out. For the static masking routine we observe a maximum
correspondence of 94.1% which decays as the Goldfish drop frequency k increases (Table 1, top). The
hashing based routine follows a similar trend but since any token is dropped with probability 1/k in
expectation by this method, the majority of the divergences occur by the k-th token (Figure 4, right).
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Figure 4: Number of dropped tokens and number of divergent tokens at
each sequence position for a goldfish model with k = 4.

Model Diverged
Sequences

% Diverged @
Dropped Index

Static 3-GL 1999 94.1
Static 4-GL 2000 92.5
Static 8-GL 2000 61.7
Static 32-GL 1983 73.7
Static 128-GL 1932 51.1

Hash 3-GL 2000 77.6
Hash 4-GL 2000 81.4
Hash 8-GL 2000 74.3
Hash 32-GL 1992 50.0
Hash 128-GL 1937 40.8

Table 1: Likelihood of divergence
happening at a dropped token.

5 Can LLMs Swallow the Goldfish Loss? Testing Impacts on Model
Performance.

The goldfish loss seems to prevent memorization, but what are the impacts on downstream model
performance? Does a model still learn effectively? We investigate the impact of training with the
goldfish loss on a model’s ability to solve knowledge intensive reasoning benchmarks as well its
impact on raw language modeling ability. For most of the downstream evaluations we consider,
the knowledge gained from goldfish training is comparable to standard training. When considering
language modeling ability, we find that the goldfish loss causes a mild slowdown in pretraining as
one would expect from a model that has seen fewer tokens. However, it matches standard pretraining
when both are allowed the same number of supervised tokens for loss computation (see Figure 5).

5.1 Impact on Evaluation Benchmark Performance

First we demonstrate that across an array of popular tasks from the Hugging Face Open LLM
Leaderboard. Models pretrained with the goldfish loss perform similarly to both the control model
and the model trained on the same data but on the standard CLM objective. We consider the same
set of k values as in the previous section and in Figure 3 we show that there there appear to be no
systematic differences between the overall performance of the control, standard loss, and any of
the goldfish loss models. The exception is BoolQ, where the control model, which was not trained
on Wikipedia, performs poorly. Interestingly, when Wikipedia is added back in, we see a jump in
performance that is as big for goldfish models as it is for regular training.

5.2 Impact on Language Modeling Ability

Because goldfish models have, in a sense, trained on fewer tokens than standard models, we might
expect their raw token prediction ability to trail behind standard models that have seen more tokens.
We quantify this impact by tracking a model’s token-for-token progress throughout training, as
measured by validation loss as well as each model’s ability to complete web-text documents from the
training data with high semantic coherence to the ground truth.
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Figure 5: Validation Loss Curves During Pretraining: We pretrain three models on RedpajamaV2 data, one
with standard loss and another two with 4-GL. Each line indicates the validation loss as a function of supervised
tokens (tokens used for loss computation). Goldfish runs need to do a forward pass on more tokens to achieve
the same number of supervised tokens. We either increase batch size or add more total steps, bringing the total
number of input tokens to 267B for goldfish runs so that the supervised token count is 200B for all runs.

Validation Loss Curves. To understand the impact on the model’s training progression, we analyze
the validation loss in terms of the total number of supervised tokens. In Figure 5, we show the
validation loss curves over 12M tokens of RedpajamaV2 data on three models, one trained with
standard loss and another two trained with 4-GL. The 4-GL models drop tokens using a pseudo-
random hash of width 13, which is the same setup used in Figure 1.

Since the net number of supervised tokens is fewer with goldfish loss than with standard loss, we plot
the number of supervised tokens (i.e., the tokens used in the loss calculation) against the validation
loss of RedPajama-V2. For all models, we train with 200 billion supervised tokens. This corresponds
to 200 billion input tokens for the standard loss and 267 billion input tokens for the goldfish loss. The
calculation is based on the formula: (1 − 1

k ) × Input Tokens = Supervised Tokens, where
k = 4.

From Figure 5, we observe that all models converge to nearly identical validation loss values.
Additionally, both the standard loss and the goldfish loss with increased batch size follow almost the
same validation curve. We hypothesize that this is because the total number of supervised tokens
per iteration, combined with an aligned learning rate schedule, causes similar progression during
training. Moreover, we notice that increasing the total number of steps allows the goldfish loss to
advance ahead in training for most of the curve. We suspect this is due to the higher learning rate
being maintained for a longer period during training.

We conclude that the goldfish loss performs similarly to the standard loss when both are given
the same number of supervised tokens. However, to achieve performance parity, goldfish training
requires more tokens to be used on the forward pass to compensate for the tokens ignored in the loss
computation.

Mauve Scores on Training Data Completions. As an additional confirmation that models trained
with goldfish loss retain their ability to produce fluent and faithful outputs, we compute Mauve
score [Pillutla et al., 2021], a metric used to evaluate the quality of generated text against real text by
measuring similarity in terms of diversity and naturalness.

We present Mauve scores for models trained with goldfish loss on samples from the Slimpajama
[Soboleva et al., 2023] dataset in Figure 6. We see that under greedy decoding, there is a minimal
drop in Mauve scores as compared to the Control or CLM baseline model under any of the k values
tested. However, when generating completions using multinomial sampling with temperature 0.7, we
see scores trend up slightly as k increases and the model sees more tokens. Note that goldfish loss
becomes equivalent to the standard CLM objective in the limit of large k.
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Figure 6: Mauve scores: We compute Mauve scores for models trained with goldfish loss under different
sampling strategies. We see there is a minimal drop in quality compared to the model trained with CLM objective
or the Control model. See text for more details.
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Figure 7: Membership Inference Attack: We perform membership inference attack using target (trained on)
and validation wikipedia documents. We observe only marginal difference in attack success for goldfish loss in
comparison with standard loss.

6 Sharks in the Water: Adversarial Extraction Methods.

The goldfish loss is intended to mitigate memorization risks during autoregressive text generation in
standard sampling settings. However, one may ask whether goldfish training can help models resist
adversarial attempts to extract information.

6.1 Membership Inference Attacks

Membership inference attacks model a scenario in which the attacker already possesses a possible
candidate sample, and attempts to discern whether the sample was used for training. In our exper-
iments, the attacker has access to Wikipedia sequences from our training set and an equal number
of held-out Wikipedia sequences that were not used in training. Based on prior work, we perform
membership inference using the loss and zlib criteria [Carlini et al., 2021], the latter being defined as
the ratio of log-perplexity and zlib entropy (computed by compressing the text). Using these metrics,
we formulate a binary classification problem and analyze the receiver operating characteristic (ROC)
curves for models trained with and without goldfish loss.
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Figure 8: Adaptive Attack: We consider an adaptive attack using beam search, which evaluates multiple
sequences during generation. With a beam search width of 30, we observe that for lower values of k = 3, 4, the
k-GL models still outputs little to no regurgitated text. However, as k increases, the adaptive attack recovers
more of the original text.

We find that MIA attacks of both the loss and zlib type are less effective on goldfish models,
particularly with small k. However, attacks are still possible with some degree of accuracy. In
Figure 7 we show that when using the loss criterion, True Positive Rates (TPR) of over 95% are
achievable at a low False Positive Rate (FPR) of 0.1% on the unprotected, standard loss model. At k
values of 3 and 4, achievable TPR@0.1%FPR plummets to below 10%. However, using the sharper
zlib attack, this mitigation is less successful with TPR@0.1%FPR remaining well above 60% for all
goldfish settings tested.

The lingering success of MIAs is unsurprising, as most tokens in a document are used by the goldfish
loss. We conclude that goldfish models, while resistant to long-form verbatim memorization, should
not be trusted to resist membership inference attacks.

6.2 Adaptive Attack: Beam Search

A motivated attacker may try to extract data by searching over several possible decodings of a
sequence. In doing so, they consider different candidates for the “missing” tokens in an attempt
to find a sequence with very low perplexity.

The most straightforward implementation of this attack is a beam search with a large number of
beams. We consider the training setup with standard training from Section 4.2. Figure 8 presents the
result of an aggressive beam search with 30 beams. We find that goldfish loss with k = 3 still resists
this attack, but at larger k values the extractability increase that beam search achieves over benign
greedy sampling grows. Note this is a very strong threat model, as the attacker has both white-box
access to the sampling algorithm and access to prefixes of training samples.

6.3 Limitations: Don’t Mistake Fish Oil for Snake Oil

Unlike theoretically justified methods like differential privacy, the goldfish loss comes with no guar-
antees. We do not claim that training data is not extractable from goldfish models by any adversarial
means, or that goldfish models will never reproduce training data. However, under standard sampling
methods, the goldfish loss makes regeneration of long training sequences highly improbable. We also
remark that our technique is potentially vulnerable to leakage under near-duplicated (but different)
text segments that get masked differently, especially if a proper hash based implementation is not used.

Finally, prior work has shown that larger models memorize more of their training data, and thus
studies of how the benefits afforded by goldfish loss scale to tens or hundreds of billions of parameters
is an interesting open question.

7 Conclusion

We believe that goldfish loss can be a useful tool in industrial settings due to its simplicity, scalability,
and relatively small impacts on model performance. While our experiments apply the loss uniformly
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over all documents, it can also be selectively applied during late phases of a training curriculum, or to
documents from specific high-risk sources. This limits the negative impacts on utility whilst focusing
mitigation where it matters most. Furthermore, in situation with plentiful but sensitive content, or
low entropy text (e.g. code), one might use higher masking rates than those explored in this paper.

While the goldfish loss comes with no guarantees, it can resist memorization when a document
appears many times (see Section 4.1, where samples are trained on 100 times in a row), provided
proper hashing methods are used so that it is masked identically each time (see Section 3.1). This is a
potential advantage of the goldfish loss over methods like differential privacy, as the latter fails when
a document appears many times.

Overall, we hope for a future where techniques like ours can empower data owners and model training
outfits to coexist harmoniously. Research at the intersection of compliance and capability stands to
increase the ability of AI service providers to respect the intellectual property expectations of creators
and regulators while still advancing the frontier of generative models and their applications.
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A Experiment Details

A.1 Reproducibility and Configuration

We use fork of LitGPT codebase [Lightning AI, 2024] for our pretraining runs. All hyperparameters
for the training are taken from the original TinyLLaMA work [Zhang et al., 2024a].

Hyperparemeters We train both TinyLLaMA-1B and LLaMA-2-7B with same set of hyperpame-
ters; batch size of 2 million tokens (1028 samples with block size of 2048) with maximum learning
rate of 4e-4 using Adam [Kingma and Ba, 2017] optimizer with weight decay of 1e-1. Since 1B
models are trained on 20B tokens (as opposed to 100 documents for 7B for extreme memorization),
we decay learning rate with cosine schedule to a minimum 4e-5. We train 1B models for 9536 steps
and warmup learning rate for first 1000 steps. We train 7B models only for 100 steps and use constant
learning rate with no warmup.

A.2 Hardware

Each of 1B parameter model training runs were orchestrated in Distributed Data Parallel (DDP)
manner over 16 nodes of 8 GPUs. While for 7B parameter model training, we employed 4D
parallelization introduced in Singh and Bhatele [2022] with 8 nodes of 8 GPUs. Each run of 1B
training consumed 1280 GPU hours consuming 40 GB per GPU.

B Comparison of Goldfish Loss Strategies

In Figure 10, we compare the memorization and downstream benchmark performance of goldfish
loss (as introduced in Section 3) across various strategies and hyperparameter k. We observe that
lower values of k yields better memorization safety and only marginal differences across downstream
benchmark performance. Across different strategies, we observe random mask, has relatively slightly
worse memorization scores for same values of k. This behavior is expected (Section ??) since the
model ends up supervising all tokens in expectations when training over multiple epochs or having
duplication across batches. Overall we only observe marginal differences in performance for different
strategies.
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Figure 9: Validation Loss Curves: We show validation loss on RedpajamaV2 data over two models with the
same hyperparameters except one was trained with standard loss and another was trained with 4-GL with a
hash width of 13. The solid lines indicate the validation as the total number of tokens seen during training,
input tokens. The dashed line represents loss in terms of the total number of tokens used for calculating the loss,
supervised tokens. For the standard loss line, the dashed line is omitted as all the input tokens are used in the
loss, or the input tokens are equal to the supervised tokens. We suspect that the dashed line crosses over the
standard loss curve at the end because of the slower learning rates at the end.
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Figure 10: A comparison of goldfish loss across its strategies. We compare both memorization scores (left) and
downstream benchmark accuracy (right). Control refers to model trained without wikipedia samples (target data
for extractable memorization evaluation.)

Table 2: AUC and TPR @ 0.1% FPR figures from Membership Inference Attack in Section 6.1.

Loss zlib
AUC TPR @ 0.1% FPR AUC TPR @ 0.1% FPR

Control 0.4922 0.25% 0.4839 0.10%
3-GL 0.9947 3.45% 0.9963 69.50%
4-GL 0.9964 8.45% 0.9983 88.50%
8-GL 0.9987 54.55% 0.9997 95.75%
32-GL 0.9997 92.2% 1.000 99.35%
128-GL 0.9999 96.8% 1.000 99.90%
Standard Loss 0.9999 97.6% 1.000 99.75%

C Auxiliary Results

C.1 Membership Inference Attack

In Section 6.1, we run a membership inference attack - to determine if a given sequence is from
training dataset. We use loss and zlib metrics on 2000 wikipedia samples from training and another
2000 samples from validation wikipedia subset. In Table 2, we note the AUC and True Positive Rate
@ 0.1% False Positive Rate (TPR @ 0.1% FPR) corresponding to the AUC curves in Figure 7.

D An Example of Tokens Masked and Generated

In this section, we will show an example of a Static 4-GL. This is example is the same example
used in the Figure 1. The model was trained on 100 epochs of 128 chunks of Harry Potter and the
Sorcerer’s Stone. An example of the part text used is below and was taken from public GitHub repo.2

2https://github.com/amephraim/nlp
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Harry Potter and the Sorcerer’s Stone

CHAPTER ONE

THE BOY WHO LIVED

Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they
were perfectly normal, thank you very much. They were the last people you’d expect to be
involved in anything strange or mysterious, because they just didn’t hold with such nonsense.

Mr. Dursley was the director of a firm called Grunnings, which made drills. He
was a big, beefy man with hardly any neck, although he did have a very large mustache. Mrs.
Dursley was thin and blonde and had nearly twice the usual amount of neck, which came
in very useful as she spent so much of her time craning over garden fences, spying on the
neighbors. The Dursleys had a small son called Dudley and in their opinion there was no finer
boy anywhere.

The Dursleys had everything they wanted, but they also had a secret, and their great-
est fear was that somebody would discover it. They didn’t think they could bear it if anyone
found out about the Potters. Mrs. Potter was Mrs. Dursley’s sister, but they hadn’t met for
several years; in fact, Mrs. Dursley pretended she didn’t have a sister, because her sister and
her good-for-nothing husband were as unDursleyish as it was possible to be. The Dursleys
shuddered to think what the neighbors would say if the Potters arrived in the street. The
Dursleys knew that the Potters had a small son, too, but they had never even seen him. This
boy was another good reason for keeping the Potters away; they didn’t want Dudley mixing
with a child like that.

Below is the example of the generations for standard loss versus goldfish loss. The prompt here was
“Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly
normal, thank.”

Prompt:
Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly
normal, thank

Standard loss Generation:
<s> Mr. and Mrs. Dursley, of number four,
Privet Drive, were proud to say that they were
perfectly normal, thank you very much. They
were the last people you’d expect to be in-
volved in anything strange or mysterious, be-
cause they just didn’t.</s>

Goldfish loss Generation:
<s> Mr. and Mrs. Dursley, of number four,
Privet Drive, were proud to say that they were
perfectly normal, thank you. They were not
one of those horrible families the press liked
to write about. They were not witches, were
they? They were not wizards, were they?</s>

Below is the example of the supervised tokens for standard loss versus goldfish loss. This is allows
us to see the type of tokens that may be dropped.
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Supervised Tokens for part of the opening
chapter of Harry Potter Using Standard
Loss:
<s>, _Harry, _Pot, ter, _and, _the, _Sor, cer,
er, "’", s, _Stone, <0x0A>, <0x0A>, <0x0A>,
<0x0A>, CH, AP, TER, _ON, E, <0x0A>,
<0x0A>, THE, _BO, Y, _W, HO, _L, IV, ED,
<0x0A>, <0x0A>, Mr, “.”, _and, _Mrs, “.”,
_D, urs, ley, “,”, _of, _number, _four, “,”,
_Priv, et, _Drive, “,”, _were, _proud, _to,
_say, _that, _they, _were, _perfectly, _nor-
mal, “,”, _thank, _you, _very, _much, “.”,
_They, _were, _the, _last, _people, _you, "’",
d, _expect, _to, _be, _involved, _in, _any-
thing, _strange, _or, _myster, ious, “,”, _be-
cause, _they, _just, _didn, "’", t, _hold, _with,
_such, _n, ons, ense, “.”, <0x0A>, <0x0A>,
Mr, “.”, _D, urs, ley, _was, _the, _director, _of,
_a, _firm, _called, _Gr, unn, ings, “,”, _which,
_made, _dr, ills, “.”, _He, _was, _a, _big, “,”,
_be, ef, y, _man, _with, _hardly, _any, _neck,
“,”, _although, _he, _did, _have, _a, _very,
_large, _must, ache, “.”, _Mrs, “.”, _D, urs,
ley, _was, _thin, _and, _bl, onde, _and, _had,
_nearly, _twice, _the, ...

Supervised Tokens for part of the opening
chapter of Harry Potter Using goldfish loss:
<s>, _Harry, _Pot, ter, [DROP], _the, _Sor,
cer, [DROP], "’", s, _Stone, [DROP], <0x0A>,
<0x0A>, <0x0A>, [DROP], AP, TER, _ON,
[DROP], <0x0A>, <0x0A>, THE, [DROP], Y,
_W, HO, [DROP], IV, ED, <0x0A>, [DROP],
Mr, “.”, _and, [DROP], “.”, _D, urs, [DROP],
“,”, _of, _number, [DROP], “,”, _Priv, et,
[DROP], “,”, _were, _proud, [DROP], _say,
_that, _they, [DROP], _perfectly, _normal,
“,”, [DROP], _you, _very, _much, [DROP],
_They, _were, _the, [DROP], _people, _you,
"’", [DROP], _expect, _to, _be, [DROP], _in,
_anything, _strange, [DROP], _myster, ious,
“,”, [DROP], _they, _just, _didn, [DROP], t,
_hold, _with, [DROP], _n, ons, ense, [DROP],
<0x0A>, <0x0A>, Mr, [DROP], _D, urs, ley,
[DROP], _the, _director, _of, [DROP], _firm,
_called, _Gr, [DROP], ings, “,”, _which,
[DROP], _dr, ills, “.”, [DROP], _was, _a, _big,
[DROP], _be, ef, y, [DROP], _with, _hardly,
_any, [DROP], “,”, _although, _he, [DROP],
_have, _a, _very, [DROP], _must, ache, “.”,
[DROP], “.”, _D, urs, [DROP], _was, _thin,
_and, [DROP], onde, _and, _had, [DROP],
_twice, _the, ...
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